Mathematics Grade- and Course-Level Expectations The *Mathematics Grade and Course Level Expectations* outline related ideas, concepts, skills and procedures that form the foundation for understanding and learning mathematics. They provide a framework to bring focus to teaching, learning, and assessing mathematics. The Grade Level Expectations (GLEs) in grades K-8 specify mathematical content that students need to understand deeply and thoroughly for future mathematics learning. The Course Level Expectations (CLEs) for Algebra I, Geometry, and Algebra II, as well as Integrated Math II and Integrated Math III to be posted at a later date, outline mathematics expectations for students enrolled in both traditional and integrated mathematics programs. Since the Outstanding Schools Act of 1993, several documents have been developed prior to the 2004 K-12 *Grade Level Expectations* to aid Missouri school districts in creating curriculum that will enable all students to achieve their maximum potential. Those include: - The Show-Me Standards which identify broad content knowledge and process skills for all students to be successful as they continue their education, enter the workforce, and assume civic responsibilities - The Framework for Curriculum Development which provides districts with a "frame" for building curricula using the Show-Me Standards as a foundation - The Assessment Annotations for the Curriculum Frameworks which identify content and processes that should be assessed at the local and state level in grades 4, 8, and 10 mathematics Essential content, aligned to state and national documents that support inquiry-based instruction, included in the Grade and Course Level Expectations should **be addressed in contexts that promote problem solving, reasoning, communication, making connections, and designing and analyzing representations**. Each Grade and Course Level Expectation is aligned to the Show-Me Content and Process Standards (1996). In addition, a Depth-of-Knowledge level has been assigned to each grade or course level expectation. The Depth of Knowledge identifies the highest level at which the expectation will be assessed, based upon the demand of the GLE. Depth-of-Knowledge levels include: Level 1-recall; Level 2-skill/concept; Level 3-strategic thinking; and Level 4-extended thinking. Each GLE or CLE has been coded to identify those assessed at the state or local level. Those coded with an asterisk *, indicate that it should be assessed at the local level. Those with no asterisk, indicate an expectation that will be assessed at the state level on a 3rd – 8th grade MAP Assessment or End-of-Course Exam. It is essential to include all expectations in your course or grade level curriculum, as they are important components in the understanding and learning of mathematics. Sources: College Board Standards for College Success: Mathematics and Statistics (College Board, 2006). Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics (National Council of Teachers of Mathematics, 2007); Indicators of College Readiness within Missouri's Two-Year Colleges (Missouri Development Education Consortium); Depth-of-Knowledge Levels (Norman Webb); Mathematics Engineering Technology & Science (METS) Alliance Report (2006); Principles and Standards for School Mathematics (National Council of Teachers of Mathematics, 2000); Show-Me Standards (Missouri Department of Elementary and Secondary Education). | 1. U | nderstand nu | mbers, ways | of representi | ng numbers, re | elationships a | mong number | s and number | systems | | | | | |------------------------------------|------------------------------------|--|------------------------------|-------------------------|-------------------------|----------------------------|------------------------------|--------------------------|---------------------------|-------------------|------------------|----------------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | | | | | | | | | | | | | | _ | *rote count to | *read, write, | *read, write, | *read, write | read, write and | *read, write | apply and | compare and | *compare and | compare and | compare and | compare and | | Α | 100 and | and compare | and compare | and compare | compare and | and compare | understand | order all | order all | order rational | order rational | order rational | | | recognize | whole numbers | positive rational | rational | and irrational | and irrational | and irrational | | 10 | numbers up to | less than 100 | less than 1000 | up to 10,000 | less than | less than | to millions, | numbers and | numbers | numbers, | numbers, | numbers, | | Read, write and compare numbers | 31 | | | | 100,000 | 1,000,000, <u>unit</u> | fractions and | find their | including | including | including | including | | m b a | | | | | | fractions and | decimals to the | approximate | percents, and | finding their | finding their | finding their | | i i a | | | | | | decimals to | thousandths | location on a | find their | approximate | approximate | approximate | | are × | | | | | | hundredths | (including | number line | approximate | locations on a | locations on a | locations on a | | sad
npa | | | | | | (including location on the | location on the number line) | | location on a number line | number line | number line | number line | | % 50 | | | | | | number line) | number line) | | Humber line | | | | | | | | | | | number inter | | | | | | | | DOK | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | ST | MA 5 1.10 | | *recognize ½ | *recognize ½ | *recognize unit | *represents | *use models, | recognize and | recognize and | recognize and | *use fractions, | use real | use real | use real | | В | of a shape | and ¼ of a | fractions of a | halves, thirds | benchmarks (0, | generate | generate | generate | decimals and | numbers and | numbers and | numbers and | | | · | shape | shape | and fourths | 1/2 and 1) and | equivalent | equivalent | equivalent | percents to | various models, | various models, | various models, | | a) | | | | | equivalent | forms of | forms of | forms of | solve problems | drawing, etc. to | drawing, etc. to | drawing, etc. to | | use | | | | | forms to judge | commonly used | fractions, | fractions, | | solve problems | solve problems | solve problems | | Represent and use rational numbers | | | | | the size of | fractions and | decimals and | decimals and | | | | | | nu nu | | | | | fractions | decimals | <u>benchmark</u> | percents | | | | | | ser
nal | | | | | | | percents | | | | | | | ore
tior | | | | | | | | | | | | | | Rel | DOK | 1 | 1 | 1
MA 5 1.10 | 1
MA 5 1.10 | 2
MA 5 3.3 | 3
MA 5 3.3 | 3
MA 5 3.3 | 3 | | ST | MA 5 1.10 | MA 5 | | | 1 | ĺ | 1 | | | | IVIA 5 3.3 | MA 5 3.3 | | С | *use <u>concrete</u>
objects to | <u>*compose</u> or
<u>decompose</u> | <u>*compose</u> or decompose | recognize
equivalent | recognize
equivalent | *recognize
equivalent | *recognize equivalent | *recognize
equivalent | *recognize equivalent | *use a variety of | | *use a variety
of | | | compose and | whole numbers | numbers by | representations | representations | | | decompose | up to 20 using | using a variety | for the same | to demonstrate | | to demonstrate | | ers | values up to | multiple | of strategies, | number and | an | | an | | 말 | 10 | strategies such | such as using | generate them | understanding | | understanding | | e a | | as known | known facts, | by decomposing | of very large | | of very large | | Compose and decompose numbers | | facts, doubles | tens place value | and composing | and very small | | and very small | | שלים | | and close to | or <u>landmark</u> | numbers | numbers | numbers, | numbers | numbers, | numbers, | numbers | | numbers | | CO | | doubles, tens, | numbers to | including | | | | including | including | | | | | dec | | and one place | solve problems | expanded | | | | exponential | scientific | | | | | | | value | | notation | | | | notation | notation | | | | | DOK | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | | ST | MA 1 1.6 | MA 5 1.6 | L | MA 5 1.6 | | 1. U | nderstand nu | ımbers, ways | of representir | ng numbers, r | elationships a | mong number | s and number | systems co | ntinued | | | | |---|--------------|----------------------------------|--|---|---|--|--------------|------------|---------|-----------|----------|------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | D | | *skip count by
2s, 5s and 10s | *skip count by
multiples of
numbers less | *classify
numbers
their | *classify and
describe
numbers by | *describe
numbers
according to | | | | | | | | Classify and describe numeric relationships | | | than 10 | characteristics,
including odd
and even | their characteristics, including odd, even, multiples and factors | their characteristics, including whole number common factors and multiples, prime or composite, and square numbers | | | | | | | | DOK | | 1 | 1 | 1 | 2 | 2 | | | | | | | | ST | | MA 5 1.6 | MA 5 1.6 | MA 5 1.6 | MA 5 1.10 | MA 5 1.10 | | | | | | | | 2. l | Inderstand m | eanings of op | erations and | how they rela | ate to one ano | ther | | | | | | | |----------------------------------|---------------------|---
---|---|--|--|--|---|--|--|----------|------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Α | | *represent/
model a given
situation | *represent/
model a given
situation | *represent/
model a given
situation in- | *represent and recognize multiplication | represent and recognize division using | | | | | | | | Represent operations | | involving
addition and
subtraction of
whole numbers
using pictures,
objects, or
symbols | involving two-
digit whole
number
addition or
subtraction | Volving multi- plication and related division using various models includ- ing sets, arrays, areas, repeated addition/sub- traction, sharing and partitioning | and related
division using
various models,
including equal
intervals on the
number line,
equal size
groups,
distributive
property, etc. | various models,
including
<u>quotative</u> and
<u>partitive</u> | | | | | | | | DOK
ST | | <u>2</u>
MA 1 1.10 | 2
MA 1 1.10 | MA 1 1.0 | 2
MA 1 1.10 | 2
MA 1 1.10 | | | | | | | | Describe effects of a operations | | | | *describe the effects of adding and subtracting whole numbers as well as the relationship between the two operations | describe the effects of multiplying and dividing whole numbers as well as the relationship between the two operations | *describe the
effects of
addition and
subtraction on
fractions and
decimals | describe the effects of multiplication and division on fractions and decimals | *describe the effects of all operations on rational numbers including integers | | *describe the effects of operations, such as multiplication, division, and computing powers and roots on the magnitude of quantities | | | | DOK
ST | | 2
MA 1 1.10 | | 2
MA 1 1.10 | | 2
MA 1 1.10 | | | | Apply properties of operations | | WE I IIV | | We 1 1.19 | ma I I.IV | WR 1 1.10 | *apply properties of operations (including order of operations) to positive rational | apply properties of operations (including order of operations) to positive rational | apply properties of operations to all rational numbers including order of operations | ma 1 1.19 | | | | Apply pr | | | | | | | numbers 2 MA 1 1.10 | numbers and integers 2 MA 1 1.10 | and inverse operations 2 MA 1 1.10 | | | | | 2. U | nderstand me | anings of op | erations and | how they rela | te to one ano | ther contin | ued | | | | | | |--|--------------|--------------|--------------|---------------|---------------|-------------|--|---|---------|--|--|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | D | | | | | | | identify square
and cubic
numbers and | *approximate
the value of
square roots to | | *apply operations to real numbers, | *apply operations to real numbers, | *apply operations to matrices and | | Apply operations on real and complex numbers | | | | | | | determine
whole number
roots and cubes | the nearest
whole number | | using mental
computation or
paper-and-
pencil
calculations for
simple cases
and technology
for more
complicated
cases | using mental
computation or
paper-and-
pencil
calculations for
simple cases
and technology
for more
complicated
cases | complex numbers, using mental computation or paper-and- pencil calculations for simple cases and technology for more complicated cases | | DOK | | | | | | | 1 | 1 | | 2 | 2 | 2 | | ST | | | | | | | M 5 1.6 | MA 5 1.6 | | MA 1 1.10 | MA 1 1.10 | MA 1 1.10 | | 3. C | ompute fluen | itly and make | reasonable es | timates | | | | | | | | | |---|---------------------------|--|--|---|---|--|------------------------------|--|---------|-----------|----------|------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | ent S | | *describe or
represent the
mental strategy
used to
compute | *describe or
notate the
mental
strategy
used to | *represent a
mental strategy
used to
compute a
given | *represent a
mental strategy
used to
compute a
given | *describe a
mental strategy
used to
compute a
given division | | | | | | | | Describe or represent mental strategies | | addition and subtraction problems | compute addition or subtraction of whole numbers, including 2- digit numbers | multiplication
problem up to 9
x 9 | multiplication
problem (up to
2-digit by 2-digit
multiple of) | problem, where
the quotient is a
multiple of 10
and the divisor
is a 1-digit
number (e.g.,
350 /7) | | | | | | | | DOK
ST | | 2
MA 1 3.2 | | | | | | | | В | *connect
number words | *use <u>strategies</u>
to develop | *demon-
strate | use strategies develop fluency | demonstrate
fluency with | demonstrate
fluency with | | | | | | | | | (orally) and | fluency with | fluency | with basic | basic number | efficient | | | | | | | | Develop and demonstrate fluency | quantities they represent | basic number
relationships of
addition and
subtraction for
sums up to 20 | including quick recall with basic number relationships of addition and subtraction for sums up to 20 | number
relationships (9
X 9) of
multiplication
and division | relationships
(12 X 12) of
multiplication
and related
division facts | procedures for
adding and
subtracting
decimals and
fractions (with
unlike
denominators)
and division of
whole numbers | | | | | | | | DOK
ST | 1
MA 1 1.10 | 1
MA.1 1.6 | 1
MA.1 1.6 | 1
MA.1 1.6 | 1
MA.1 1.6 | 1
MA 1 1.6 | | | | | | | | С | | *apply and describe the | *apply and describe the | apply and describe the | apply and describe the | apply and describe the | multiply and divide positive | apply all operations on | | | | | | Compute problems | | strategy used to
solve addition
or subtraction
problems | strategy used to compute 3 2-digit addition or subtraction problems with regrouping | strategy used to
compute up to
3-digit addition
or subtraction
problems | strategy used to
compute a
given
multiplication of
2-digit by 2-digit
numbers and
related division
facts | strategy used to
compute a
division problem
up to a 3- digit
by 2-digit and
addition and
subtraction of
fractions and
decimals | rational
numbers | rational
numbers
including
integers | | | | | | DOK | | 2 | 2 | 2 | 2 | 2 | 1 | 2 | | | | | | ST | | MA 1 3.2 | MA 1 3.1 | MA 1 3.1 | | | | | | 3. C | ompute fluent | tly and make r | easonable est | imates conti | nued | | | | | | | | |--------------------------------|---------------|----------------|---|--|--|--|---|--|---------|--|--|---| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra I I | | D | | | *estimate sums
and differences
of whole | estimate and
justify sums and
differences of | estimate and justify products of whole | estimate and justify products, and quotients of | *estimate and
justify the
results of | *estimate and
justify the
results of all | | *judge the
reasonableness
of
numerical | *judge the
reasonableness
of numerical | *judge the
reasonableness
of numerical | | Estimate and justify solutions | | | numbers | whole numbers | numbers | whole numbers
and sums
differences of
decimals and
fractions | multiplication
and division of
positive rational
numbers | operations on rational numbers | | computations
and their results | computations
and their results | computations
and their results,
including
complex
numbers | | DOK | | | 3 | 3 | 3 | 3 | 3 | 3 | | 3 | 3 | 3 | | ST | | | MA 1 3.2 | | MA 1 3.2 | MA 1 3.2 | MA 1 3.2 | | Use proportional reasoning | | | | | | | solve problems
using ratios and
rates | solve problems
involving
proportions,
such as scaling
and finding
equivalent ratios | | *solve problems
involving
proportions | *solve problems
involving
proportions | *solve problems
involving
proportions | | DOK | | | | | | | 2 | 2 | | 2 | 2 | 2 | | ST | | | | 1 | | | MA 1 3.2 | MA 1 3.2 | | MA 1 3.2 | MA 1 3.2 | MA 1 3.2 | | 1. l | Jnderstand pa | atterns, relation | ons and funct | ions | | | | | | | | | |--------------------------------------|--|---|--|--|---|---|--|--|--|---|---|---| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Recognize and extend patterns | *recognize or
repeat
sequences of
sounds or
shapes | *extend
patterns of
sound, shape,
motion or a
simple numeric
pattern | *describe and extend simple numeric patterns and change from one representation to another | *extend
geometric
(shapes) and
numeric
patterns to find
the next term | *describe
geometric and
numeric
patterns | make and describe generalizations about geometric and numeric patterns | | | | | | | | DOK | 2
MA 4 1.6 | | | | | | | | Create and analyze B | *create and continue patterns | *describe how
simple
repeating
patterns are
generated | *describe how
simple growing
patterns are
generated | *represent
patterns using
words, tables or
graphs | *analyze
patterns using
words, tables
and graphs | represent and
analyze
patterns using
words, tables
and graphs | represent and describe patterns with tables, graphs, pictures, symbolic rules or words | analyze patterns represented graphically or numerically with words or symbolic rules, including recursive notation | generalize patterns represented graphically or numerically with words or symbolic rules, using explicit notation | generalize patterns using explicitly or recursively defined functions | generalize patterns using explicitly or recursively defined functions | generalize patterns using explicitly or recursively defined functions | | DOK | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 2 | | Classify objects and representations | MA 4 1.6 | *compare various forms of representations to identify patterns | MA 4 1.6 compare and contrast various forms of representations of patterns | ma 4 1.6 compare and contrast various forms of representations of patterns | compare and contrast various forms of representations of patterns | ma 4 1.6 compare and contrast various forms of representations of patterns | ma 4 1.6 compare and contrast various forms of representations of patterns | | DOK | | | | | | | 2 | 3 | 3 | 3 | 3 | 3 | | ST | | | | | <u> </u> | <u> </u> | MA 4 1.6 | | Number Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 Algebra Geometry Algebra I | 1. L | Inderstand pat | tterns, relatio | ns and functi | ons continu | ed | | | | | | | | |---|--------------------------------|----------------|-----------------|---------------|-------------|----|---------|---|---------------------------|---|--|---------------------------|--------------------------| | D | | | | | | | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | tables or graphs or equations and solve equations are equations and solve equations are equations. DOK 1 | D | | | | | | | <u>functions</u> as
<u>linear</u> or | functions as
linear or | <u>functions</u> as
<u>linear</u> or | compare the properties of | appropriate properties of | properties of linear, | | E MA 4 1.6 | Identify and compare functions | | | | | | | | tables, graphs | tables, graphs | <u>nonlinear</u> | simplify expressions and | logarithmic and rational | | E describe the effects of parameter changes on linear, exponential growth/decay and quadratic functions including intercepts | DOK | | | | | | | | 1 | | | 2 | | | effects of parameter changes on linear, exponential growth/decay and quadratic functions including intercepts | ST | | | | | | | MA 4 1.6 | | Changes on linear. exponential growth/decay and quadratic functions including intercepts DOK Changes on functions Changes on functions functions 2 2 2 | E | | | | | | | | | | effects of | | effects of | | | | | | | | | | | | | changes on linear, exponential growth/decay and quadratic functions including intercepts | | changes on functions | | | DOK | | | | | | | | | | 2
MA 4 1.6 | | 2
MA 4 1.6 | | 2. R | epresent and | analyze math | nematical situa | ations and stru | uctures using | algebraic sym | bols | | | | | | |--|--------------|--|--|---|---|--|--|---|---|--|----------|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Α | | *using addition
or subtraction,
represent a | *using addition
or subtraction,
represent a | using all operations, represent a | using all operations, represent a | using all operations, represent a | use <u>symbolic</u>
<u>algebra</u> to
represent | use <u>symbolic</u>
<u>algebra</u> to
represent | use <u>symbolic</u>
<u>algebra</u> to
represent and | use <u>symbolic</u>
<u>algebra</u> to
represent and | | use <u>symbolic</u>
<u>algebra</u> to
represent and | | Represent mathematical situations | | mathematical situation as an expression or number sentence | mathematical situation as an expression or number sentence | mathematical situation as an expression or number sentence | mathematical situation as an expression or number sentence | mathematical situation as an expression or number sentence using a letter or symbol | unknown
quantities in
expressions or
equations and
solve one-step
equations | unknown
quantities in
expressions or
equations and
solve linear
equations with
one variable | solve problems
that involve
linear
relationships | solve problems
that involve
linear and
quadratic
relationships
including
equations and
inequalities | | solve problems that involve exponential, quadratic and logarithmic relationships | | DOK | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | | 3 | | ST | | MA 4 1.10 | MA 4 3.3 | MA 4 3.3 | MA 4 3.3 | MA 4 3.3 | | MA 4 3.3 | | Describe and use mathematical manipulation | | *apply the commutative and associative properties of addition to whole numbers | *solve problems
with whole
numbers using
the
commutative
and associative
properties of
addition | * use the commutative, distributive and associative properties for basic facts of whole numbers | *use the commutative. distributive and associative properties of
addition and multiplication for multidigit numbers | *use the commutative, distributive and associative properties for fractions and decimals | use the commutative, distributive and associative properties to generate equivalent forms for simple algebraic expressions | use properties to generate equivalent forms for simple algebraic expressions that include positive rationals and integers | use properties to generate equivalent forms for simple algebraic expressions that include all rationals | describe and use algebraic manipulations, including factoring and rules of integer exponents and apply properties of exponents (including order of operations) to simplify expressions | | describe and use algebraic manipulations, inverse or composition of functions | | DOK | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 2 | | ST | | MA 4 1.10 | MA 4 3.2 | MA 4 3.2 | | 2. R | epresent and a | analyze mathe | ematical situat | ions and stru | ctures using a | lgebraic symbo | ls continue | ed | | | | | |--------------------------|----------------|---------------|-----------------|---------------|----------------|----------------|-------------|---------|---------|--|----------|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | С | | | | | | | | | | use and solve
equivalent
forms of | | use and solve
equivalent
forms of | | Utilize equivalent forms | | | | | | | | | | equations
(linear, absolute
value, and
quadratic) | | equations and inequalities | | DOK | | | | | | | | | | 2 | | 2 | | ST | | | | | | | | | | MA 4 3.2 | | MA 4 3.2 | | D se | - | | | | | | | | | use and solve
systems of
linear equations
or inequalities
with 2 variables | | use and solve
systems of
linear and
quadratic
equations or | | Utilize systems | | | | | | | | | | 2 | | inequalities with 2 variables | | ST | | | | | | | | | | MA 4 1.6 | | MA 4 1.6 | | 3. U | lse mathemati | ical models to | represent and | d understand | quantitative re | elationships | | | | | | | |-------------------------|--|--|--|--|---|--|--|--|---|--|--|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Use mathematical models | *model situations that involve whole numbers, using pictures, objects or symbols | *model situations that involve the addition of whole numbers, using pictures, objects or symbols | *model situations that involve addition and subtraction of whole numbers, using pictures, objects or symbols | *model problem situations, including multiplication with objects or drawings | *model problem situations, using representations such as graphs, tables or number sentences | model problem situations and draw conclusions, using representations such as graphs, tables or number sentence | model and solve
problems, using
multiple
representations
such as tables,
expressions and
one-step
equations | model and solve
problems, using
multiple
representations
such as graphs,
tables,
expressions,
and linear
equations | model and solve
problems, using
multiple
representations
such as graphs,
tables, and
linear equations | identify quantitative relationships and determine the type(s) of functions that might model the situation to solve the problem | identify quantitative relationships and determine the type(s) of functions that might model the situation to solve the problem | identify quantitative relationships and determine the type(s) of functions that might model the situation to solve the problem | | DOK | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | | ST | MA 1 1.6 | MA 1 16 | MA 1 1.6 | MA 4 1.6 | MA 4 1.6 | MA 4 1.6 | MA 4 3.6 | MA 4 1.6,3.6 | MA 4 3.6 | MA 4 1.6 | MA 4 1.6 | MA 4 1.6 | | 4. | Analyze change | e in various d | ontexts | | | | | | | | | | |----------------|----------------|----------------|---|--|--|--|--|---|--|---|--|---| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Analyze change | | | *describe qualitative change, such as students growing taller | *describe quantitative change, such as students growing two inches in a year | *describe
mathematical
relationships in
terms of
constant rates
of change | *identify, model
and describe
situations with
constant or
varying rates of
change | *construct and
analyze
representations
to compare
situations with
constant or
varying rates of
change | compare
situations with
constant or
varying rates of
change | analyze the nature of changes (including slope and intercepts) in quantities in linear relationships | analyze linear
and quadratic
functions by
investigating
rates of change,
intercepts and
zeros | analyze linear
functions by
investigating
rates of change
and intercepts | analyze exponential and logarithmic functions by investigating rates of change, intercepts and asymptotes | | DOK | | | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | ST | | | MA 4 1.6 | 1. A | nalyze charac | cteristics and | properties of t | wo- and three | -dimensional o | geometric sha | oes and devel | op mathematic | al arguments | about geomet | ric relationship | os | |--|---|--|---|---|--|--|---------------------------------------|--|---|---|---|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Α | *identify and
describe 2-
and 3- | *identify, name
and describe 2-
and 3- | *describe attributes and parts of 2- and | compare and
analyze 2-
dimensional | name and identify properties of 1-, | *analyze and
classify 2- and
3-dimensional | *identify
similar and
congruent | *identify the 2-
diimensional
cross-section of | *describe,
classify and
generalize | | use inductive
and deductive
reasoning to | use
trigonometric
relationships | | Describe and use geometric relationships |
dimensional
shapes using
physical models
(circle,
rhombus,
rectangle,
triangle,
sphere,
rectangular
prism, cylinder,
pyramid) that
represent
shapes in their
environment | dimensional
shapes using
physical models
(circle, triangle,
trapezoid,
rectangle,
rhombus,
sphere,
rectangular
prism, cylinder,
pyramid) | 3-dimensional
shapes (circle,
triangle,
trapezoid,
rectangle,
rhombus,
sphere,
rectangular
prism, cylinder,
pyramid) | shapes by describing their attributes (circle, rectangle, rhombus, trapezoid, triangle) | 2- and 3-
dimensional
shapes and
describe the
attributes of 2-
and 3-
dimensional
shapes using
appropriate
geometric
vocabulary
(rectangular
prism, cylinder,
pyramid,
sphere, cone,
parallelism,
perpendic-
ularity) | shapes by describing the attributes | shapes | a 3-dimensional shape | relationships between and among types of a) 2-dimensional objects and b) 3- dimensional objects using their defining properties including Pythagorean Theorem | | establish the validity of geometric conjectures, prove theorems and critique arguments made by others | with right triangles to determine lengths and angle measures | | DOK | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 3 | | 3 | 2 | | В | MA 2 1.10 describe relationships between | MA 2 1.6 | *apply
geometric
properties such | MA 2 3.5 | MA 2 3.2 | | Apply geometric
relationships | | | | | | | | corresponding sides, corresponding angles and corresponding perimeters of similar polygons | | as similarity and angle relationship to solve multi-step problems in 2 dimensions | | | | DOK | | | | | | | | 2 | | 2 | | | | ST | | | | | | | | MA 2 1.6 | | MA 2 3.6 | | | | | nalyze charac | cteristics and p | properties of | two- and three | e-dimensional | geometric sha | pes and devel | op mathemat | ical argument | s about geom | etric relations | hips – | |------------------------------|---------------|--|---------------|---|---|---|---------------|-------------|---------------|--------------|-----------------|------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Compose and decompose shapes | | *use models to
compose and
decompose 2-
dimensional
shapes | | *predict the
results of
putting together
or taking apart
2- and 3-
dimensional
shapes | *describe the results of subdividing, combining and transforming shapes | predict and justify the results of subdividing, combining and transforming shapes | | | | | | | | DOK | | 2 | | 3 | 2 | 3 | | | | | | | | ST | | MA 2 1.6 | | MA 2 1.6 | MA 2 1.6 | MA 2 1.6 | | _ | | | | | | | Kindergarten | Grade 1 | | | | e geometry an | id other repre | esentational s | ysteilis | | | | |------------------------|--|---|--|---|---|---|---|---|--|-----------|---|------------| | | | Graue i | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Use coordinate systems | *describe,
name and
interpret
relative
positions in
space (above,
below, front,
behind) | *describe,
name and
interpret
relative
positions in
space (left,
right) | *identify
locations with
simple
relationships on
a map
(coordinate
system) | *describe
location using
common
language and
geometric
vocabulary
(forward, back,
left, right,
north, south,
east, west) | *describe
movement
using common
language and
geometric
vocabulary
(forward, back,
left, right,
north, south,
east, west) | *use coordinate systems to specify locations, describe paths and find the distance between points along horizontal and vertical lines | *use coordinate
systems to
construct
geometric
shapes | use coordinate geometry to construct and identify geometric shapes in the coordinate plane using their properties | use coordinate geometry to analyze properties of right triangles and quadrilaterals (including the use of the Pythagorean Theorem) | | make conjectures and solve problems involving 2- dimensional objects represented with Cartesian coordinates | | | DOK
ST | 2
MA 2 1.10 | 2
MA 2 1.10 | 1
MA 2 3.1 | 2
MA 2 1.10 | 2
MA 2 3.3 | 2
MA 2 1.10 | 2
MA 2 1.10 | 2
MA 2 3.2 | 2
MA 2 3.2 | | 3
MA 2 3.3 | | | 3. <i>I</i> | apply transfor | mations and | use symmetry | to analyze m | athematical s | ituations | | | | | | | |---|---|--|---|--|---|---|---|---|---|-----------|---|---| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Use transformations A on objects | *use manipulatives to recognize from different perspectives and orientations models of slides and turns | *use
manipulatives
to model flips | *use
manipulatives
to model slides
and turns | *determine if
two objects are
<u>congruent</u>
through a slide,
flip or turn | predict the results of sliding/ translating. flipping/ reflecting or turning/ rotating around the center point of a polygon | *predict, draw and describe the results of sliding/translating, flipping/reflecting and turning/rotating around a center point of a polygon | *describe the transformation from a given pre-image using the terms reflection/flip, rotation/turn, and translation/slide | | reposition shapes under formal transformations such as reflection, rotation and translation | | use and apply constructions and the coordinate plane to represent translations, reflections, rotations and dilations of objects | | | DOK
ST | 2
MA 2 1.6 | 2
MA 2 1.6 | 2
MA 2 1.6 | 2
MA 2 3.2 | 3
MA 2 3.6 | 3
MA 2 3.6 | 3
MA 2 3.3 | | 2
MA 2 3.3 | | 2
MA 2 1.10 | | | Use transformations on Functions | | | | | | | | describe the relationship between the scale factor and the perimeter of the image using a dilation (contractions-magnifications) (stretching/shrinking) | describe the relationship between the scale factor and the area of the image using a dilation (stretching/ shrinking) | | | translate, dilate and reflect functions | | DOK
ST | | | | | | | | 2
MA 2 3.6 | | | | 2
MA 4 3.1 | | Use Symmetry | | *recognize
shapes that
have symmetry | *create shapes
that have
symmetry | *identify lines
of symmetry in
polygons | create a figure
with multiple
lines of
symmetry and
identify the
lines of
symmetry | identify
polygons and
designs with
rotational
symmetry | *create
polygons and
designs with
rotational
symmetry | *determine all
lines of
symmetry of a
polygons | *identify the
number of
rotational
symmetries of
regular
polygons | | identify types of
symmetries of
2- and 3-
dimensional
figures | | | DOK | | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | | 2 | | | ST | | MA 2 1.10 | MA 2 1.10 | MA 2 1.10 | MA 2 1.10 | MA 2 1.6 | MA 2 1.6 | MA 2 1.6 | MA 2 1.6 | | MA 2 1.10 | | | 4. U | se visualizatio | n, spatial rea | asoning and g | eometric mod | deling to solve | problems | | | | | | | |---|-----------------|----------------|---------------|--------------|---
---|--|---|--|---|--|---| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Α | | | | | *given the picture of a prism, identify | given a <u>net of a</u>
<u>prism</u> or
cylinder, | *use spatial visualization to identify | *use spatial visualizations to identify various | create <u>isometric</u>
<u>drawings</u> from a
given <u>mat plan</u> | | draw and use
vertex-edge
graphs or | | | Recognize and draw threedimensional representations | | | | | the shapes of
the faces | identify the 3-
dimensional
shape | isometric
representations
of mat plans | 2-dimensional views of isometric drawings | | | networks to find optimal solutions and draw representations of 3-dimensional geometric objects from different perspectives | | | DOK | | | | | 1 | 2 | 2 | 2 | 3 | | 3 | | | ST | | | | | MA 2 3.3 | | MA 2 4.1 | | | В | | | | | | | draw or use visual models to represent and | draw or use visual models to represent and | draw or use visual models to represent and | *draw or use
visual models to
represent and | *draw or use
visual models to
represent and | *draw or use visual models to represent and | | Draw and use visual models | | | | | | | solve problems | | DOK | | | | - | | | 3 | 3 | 3 | 3 | 3 | 3 | | ST | | | | | | | MA 2 3.3 | | 1. L | Jnderstand m | easurable atti | ributes of obje | ects and the ur | nits, systems a | nd processes | of measureme | nt | | | | | |-------------------------------|--|---|---|--|--|---|---|---|---------|-----------|----------|------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Determine unit of weasurement | *compare and
order objects
according to
their size or
weight | *select the appropriate tool for the attribute being measured (size, temperature, time, weight) | *select an appropriate unit and tool for the attribute being measured (size, temperature, time, weight) and to the nearest inch, centimeter, degree, hour and pound | *identify, justify
and use the
appropriate unit
of measure
(linear, time,
weight) | *identify and
justify the unit
of linear
measure
including
perimeter and
(customary
metric) | *identify and
justify the unit
of measure for
area (customary
and metric) | identify and
justify the unit
of measure for
area and
volume
(customary and
metric) | *identify and
justify the unit
of measure for
volume
(customary and
metric) | | | | | | DOK | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | | | | | | ST | MA 2 1.8 | MA 2 3.1 | | | | | Identify equivalent measures | | | | | *identify
equivalent linear
measures within
a system of
measurement | *identify the equivalent weights and equivalent capacities within a system of measurement | | identify the equivalent area and volume measures within a system of measurement (e.g., sq ft. to sq in, m³ to c m³) | | | | | | DOK | | | | | 1 | 1 | | 1 | | | | | | Tell and use units of time | *describe
passage of
time using
terms such as
today,
yesterday,
tomorrow | *tell time to the
nearest half
hour | *tell time to the
nearest one
fourth (quarter)
hour | tell time to the
nearest five
minutes | tell time to the nearest minute | MA 2 1.6 | *solve problems
involving
elapsed time
(hours and
minutes) | *solve problems
involving
addition and
subtraction of
time (hours,
minutes and
seconds) | | | | | | DOK | 2 | 1 | 1 | 1 | 1 | | 2 | 2 | | | | | | ST | MA 2 3.1 | MA 2 1.10 | MA 2 1.10 | MA 2 1.10 | MA 2 1.10 | | MA 5 3.1 | MA 5 3.1 | | | | | | 1. | Understand m | neasurable att | ributes of obj | jects and the | units, systems | and processe | es of measure | ment conti | nued | | | | | |-----------|---|--|-------------------------------|---|---|--------------|---------------|------------|---------|-----------|----------|------------|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | | Count and | of a penny,
nickel, dime,
and quarter | *count money
to a dolllar,
including half
dollars | *make change
from a dollar | determine
change from
\$5.00 and add
and subtract
money values
to \$5.00 | determine
change from
\$10.00 and add
and subtract
money values
to \$10.00 | | | | | | | | | | DC | K 2 | 2 | 2 | 2 | 2 | | | | | | | | | | ST | MA 1 1.10 | | | | | | | | | | 2. / | Apply appropr | iate technique | es, tools and f | ormulas to de | termine meas | surements | | | | | | | |--|--|--|--|--|---|---|--|--|---|-----------|---|------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Use standard or non-standard measurement | *measure
objects by
comparison of
lengths
(shorter, same,
longer) | *use repetition of a single unit to measure something larger than the unit, (e.g. length of book with paper clips) | *use standard
units of
measure (cm,
inch) and the
inverse
relationships
between the
size and
number of units | *use a referent
for measures to
make
comparisons
and estimates | *select and use benchmarks to estimate measurements (linear, capacity, weight) | | | | | | | | | DOK | 1 | 1 | 2 | 2 | 2 | | | | | | | | | ST | MA 2 1.6 | MA 2 1.10 | MA 2 1.6 | MA 2 1.6 | MA 2 1.6 | | | | | | | | | В | | | | | *select and use
benchmarks to
estimate
measurements | | *identify and
justify an angle
as acute,
obtuse, | *use tools to
measure angles
to the nearest
degree and | *solve
problems of
angle measure,
including those | | solve problems
of angle
measure,
including those | | | Use angle
measurement | | | | | of 0-, 45-
(acute), 90-
(right) greater
than 90
(obtuse) degree
angles | | straight, or
right | classify the
angle as acute,
obtuse, right,
straight, or
reflex | involving
triangles and
parallel lines
cut by a
transversal | | involving
triangles or
other polygons
and of parallel
lines cut by a
transversal | | | DOK | | | | | 2 | | | 1 | 1 | | 1 | | | ST | | | | *dotormino the | MA 2 1.6 | dotormino | aabta maablasse | MA 2 3.2 | MA 2 3.2 | | MA 2 3.1 | | | С | | | | *determine the
perimeter of
polygons | determine and
justify areas of
polygons and
non-polygonal | determine
volume by
finding the total
number of the | solve problems
involving the
area or
perimeter of | solve problems
involving
circumference
and/or area of | | | determine the
surface area,
and volume of
geometric | | | Apply geometric measurements | | | | | regions
imposed on a
rectangular grid | same size units
needed to fill a
space without
gaps or
overlaps | polygons | a circle and surface area/volume of a rectangular or triangular prism, or cylinder | | | figures,
including cones,
spheres, and
cylinders | | | DOK | | | | 2
MA 2 1 10 | 3 | 2 | 2 | 2 | | | 2
MA 2 1 10 | | | ST | 1 | | | MA 2 1.10 | | | MA 2 1.10 | | | 2. / | | | ues, tools and fo | | termine meas | | ontinued | | | | | | |---|--------------|---------|-------------------|---------|--------------
---|--|---|--|--|--|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Analyze precision | | | | | | | | | *analyze precision and accuracy in measurement situations and determine number of significant digits | *describe the effects of operations, such as multiplication, division and computing powers and roots on magnitudes of quantities and effects of computation on precision which include the judging of reasonable of numerical computations and their results | | apply concepts of successive approximation | | DOK
ST | | | | | | | | | 2
MA 2 1.7 | 2
MA 2 1.7 | | 2
MA 2 1.6 | | Use relationships within a measurement system | | | | | | convert from
one unit to
another within a
system of linear
measurement
(customary and
metric) | *convert from
one unit to
another within a
system of
measurement
(mass and
weight) | *convert from
one unit to
another within a
system of
measurement
(capacity) and
convert square
or cubic units
within the same
system of
measurement | MAZ 1.7 | *use <u>unit</u> <u>analysis</u> to solve problems | *use <u>unit</u> <u>analysis</u> to solve problems | *use <u>unit</u> <u>analysis</u> to solve problems involving rates, such as speed, density or population density | | DOK | | | | | | 1
MA 2 1.6 | 1
MA 2 1.6 | 1
MA 2 1.6 | | 2
MA 4 1.6 | 2
MA 4 1.6 | 2
MA 4 1.6 | | ST | | | | | | IVIA 2 1.6 | IVIA 2 1.6 | IVIA 2 1.6 | | IVIA 4 1.6 | MA 4 1.6 | IVIA 4 1.6 | | 1. F | ormulate que | stions that ca | n be addresse | ed with data a | ind collect, or | ganize and dis | play relevant | data to answe | er them | | | | |------------------------------|--|--|--|--|--|--|---|--|--|--|--|---| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra I I | | Α | | *pose questions
and gather data
about | *pose questions
and gather data
about | *design
investigations
to address a | collect data
using
observations, | evaluate data-
collection
methods | formulate
questions,
design studies | | | formulate
questions and
collect data | formulate and collect data about a | | | Formulate questions | | themselves and
their
surroundings | themselves and
their
surroundings | given question | surveys and experiments | | and collect data
about a
characteristic | | | about a characteristic which include sample spaces and distributions | characteristic | | | DOK | | 3 | 3 | 3 | 2 | 3 | 3 | | | 3 | 3 | | | ST | | MA 3 1.2 | | | MA 3 1.2 | MA 3 1.2 | | | В | *sort items
according to
their <u>attributes</u> | *sort and
classify items
according to | *sort and classify items according to | | | | | | | | | | | Classify and organize data | | their attributes | their <u>attributes</u>
and organize
data about the
items | | | | | | | | | | | DOK | 2 | 3 | 3 | | | | | | | | | | | ST | MA 2 1.8 | MA 2 1.8 | MA 3 1.8 | | | | | | | | | | | С | *create graphs
using physical
objects | *represent <u>one-</u>
<u>to-one</u>
<u>correspondence</u> | *represent <u>one-</u>
to-many
correspondence | *read and interpret information | create tables or graphs to represent | *describe
methods to
collect, organize | interpret circle
graphs; create
and interpret | select, create
and use
appropriate | select, create
and use
appropriate | select and use appropriate graphical | select and use
appropriate
graphical | select and use appropriate graphical | | Represent and interpret data | | data using
pictures and bar
graphs | data using pictures and bar graphs | from <u>line plots</u>
and graphs
(<u>bar</u> , <u>line</u> ,
<u>pictorial</u>) | categorical and
numerical data
(including line
plots) | and represent categorical and numerical data | stem-and-leaf
plots | graphical
representation
of data,
including circle
graphs,
histograms | graphical
representation
of data
(including
scatter plots)
and box plots
(box and
whiskers) | representation of data and given one-variable quantitative data, display the distribution and describe its shape | representation of data and given one-variable quantitative data, display the distribution and describe its shape | representation of data and given one- variable quantitative data, describe its shape and calculate summary statistics | | DOK | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | | ST | MA 3 1.8 | MA 3 1.8 | MA 3 1.8 | MA 3 1.10 | MA 3 1.8 | MA 3 1.2 | MA 3 1.8 | MA 3 1.8 | MA 3 1.8 | MA 6 1.8 | MA 6 1.8 | MA 3 1.8 | | 2. S | elect and use | appropriate s | tatistical met | thods to analy | ze data | | | | | | | | |---|---------------|---------------|----------------|---|--|---------------------------|---|---|---|--|----------|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Describe and analyze data | | | | *describe the shape of data and analyze it for patterns | *describe
important
<u>features</u> of the
data set | compare related data sets | find the <u>range</u>
and <u>measures</u>
<u>of center</u> ,
including
<u>median</u> , <u>mode</u>
<u>and mean</u> | find, use and interpret measures of center and spread, including ranges | find, use and interpret measures of center, outliers and spread, including range and interquartile range | apply statistical
measures of
center to solve
problems | | apply statistical
measures of
center to solve
problems | | DOK | | | | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | 3 | | Compare data R R R R R R R R R R R R R | | | | MA 3 1.6 | MA 3 1.6 | MA 3 1.6 | MA 3 1.10 | MA 3 1.10 | MA 3 1.10 compare different representations of the same data and evaluate how well each representation shows important aspects of the data | MA 3 1.10 | | MA 3 1.10 | | ST | | | | | | | | | MA 3 1.10 | | | | | Represent data algebraically | | | | | | | | | | given a
scatterplot,
determine an
equation for <u>a</u>
line of best fit | | given a
scatterplot,
determine a
type of function
which models
the data | | DOK | | | - | | | | | | | 2 | | 2 | | ST | 1 | | |] | | | | |] | MA 3 1.6 | 1 | MA 3 1.6 | | 3. D | Develop and e | valuate infere | ences and pred | dictions that a | re based on d | ata | | | | | | | |--------------------------------------|---------------|----------------|----------------|--|---|--|--|--|--|--|----------|--| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | Α | | | | *discuss events
related to
students' | *given a set of
data, propose
and justify | given a set of
data make and
justify | use
observations
about | use
observations
about | make
<u>conjectures</u>
about possible |
make
<u>conjectures</u>
about possible | | | | aluate | | | | experiences as
likely or unlikely | conclusions that are based on the data | predictions | differences
between 2
samples to | differences
between
samples to | relationships
between 2
characteristics | relationships
between 2
characteristics | | | | Develop and evaluate
inferences | | | | | | | make conjectures about the populations | make conjectures about the populations | of a sample on
the basis of
scatter plots of
the data and | of a sample on
the basis of
scatter plots of
the data | | | | Develo | | | | | | | from which the samples were taken | from which the samples were taken | approximate lines of fit | the data | | | | DOK | | | | 2 | 3 | 3 | 3 | 3 | 3 | 3 | | | | ST | | | | MA 3 3.5 | | | В | | | | | | | | | | | | | | Analyze basic statistical techniques | | | | | | | | | | | | | | DOK | | | | | | | | | | | | | | ST | 1 | | | | | 1 | | | | | | 1 | | 4. Understand and apply basic concepts of probability | | | | | | | | | | | | | |---|--------------|---------|---------|---------|---------|----------------------------|---------------------------------|--------------------------------|---------|-----------|----------|---------------------------------| | | Kindergarten | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I | Geometry | Algebra II | | _ | | | | | | *describe the | use a model | use models to | | | | describe the | | Α | | | | | | degree of | (diagrams, list, | compute the | | | | concepts of | | | | | | | | likelihood of events using | sample space,
or area model) | probability of
an event and | | | | sample space
and probability | | pts | | | | | | such words as | to illustrate the | make | | | | distribution | | ity nce | | | | | | certain, equally | possible | conjectures | | | | distribution | | Solide | | | | | | likely and | outcomes of an | (based on | | | | | | Apply basic concepts of probability | | | | | | impossible | event | theoretical | | | | | | f ps | | | | | | | | probability) | | | | | | l dc | | | | | | | | about the results of | | | | | | ₹ | | | | | | | | experiments | | | | | | DOK | | | | | | 2 | 2 | 3 | | | | 2 | | ST | | | | | | MA 3 1.10 | MA 3 1.10, 3.2 | MA 3 3.8 | | | | MA 3 3.1 | | | | | | | | | | | | | | use and | | В | | | | | | | | | | | | describe the | | | | | | | | | | | | | | concepts of conditional | | e s | | | | | | | | | | | | probability and | | crik | | | | | | | | | | | | independent | | d e | | | | | | | | | | | | events and how | | ا ق ق | | | | | | | | | | | | to compute the | | Use and describe compound events | | | | | | | | | | | | probability of a | | Us o | | | | | | | | | | | | <u>compound</u> | | | | | | | | | | | | | | <u>event</u> | | DOK | | | | | | | | | | | | 2 | | ST | | | | | | | | | | | | MA 3 3.1 |